Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A Comparative Study of the Power of Parametric and Permutation Tests for a Multidimensional Two-sample Location Problem

Tytuł:
A Comparative Study of the Power of Parametric and Permutation Tests for a Multidimensional Two-sample Location Problem
Autorzy:
Polko-Zając Dominika
Tematy:
permutation tests
comparing populations
power of test
Monte Carlo simulation
R software
Język:
angielski
Dostawca treści:
CEJSH
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Objective: A comparison of multidimensional populations is a very interesting and common statistical problem. It most often involves verifying a hypothesis about the equality of mean vectors in two populations. The classical test for verification of this hypothesis is the Hotelling’s T2 test. Another solution is to use simulation and randomization methods to test the significance of differences between the studied populations. Permutation tests are to enable statistical inference in situations where it is not possible to use classical parametric tests. These tests are supposed to provide comparable power to parametric tests with a simultaneous reduction of assumptions, e.g. regarding the sample size taken or the distribution of the tested variable in the population. The purpose of this study is a comparative analysis of the parametric test, the (usual) permutation test, and the nonparametric permutation procedure using two-stage ASL determination. Research Design & Methods: The study considered the analysis of multivariate data. The paper presents theoretical considerations and refers to the Monte Carlo simulation. Findings: The article presents a permutational, complex procedure for assessing the overall ASL (achieved significance level) value. The applied nonparametric statistical inference procedure uses combining functions. A simulation study was carried out to determine the size and power of the test under normality. A Monte Carlo simulation made it possible to compare the empirical power of this test with that of Hotelling’s T2 test. The most powerful test was the permutation test based on a two-stage ASL determination method using the Fisher combining function. Implications/Recommendations: The advantage of the proposed method is that it can be used even when samples are taken from any type of continuous distributions in a population. Contribution: The proposed test can be used in the analysis of multidimensional economic phenomena.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies