Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Approximating Financial Time Series with Wavelets

Tytuł:
Approximating Financial Time Series with Wavelets
Aproksymacja szeregów czasowych z falkami
Autorzy:
Monika Hadaś-Dyduch
Tematy:
prediction
wavelets
wavelet transform
approximation
predykcja
falki
transformata falkowa
aproksymacja
Język:
angielski
Dostawca treści:
CEJSH
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Financial time series show many characteristic properties including the phenomenon of clustering of variance, fat-tail distribution, and negative correlation between the rates of return and the volatility of their variance. These facts often render standard methods of parameter estimation and forecasting ineffective. An important feature of financial time series is that they can be characterized by long samples. This causes the models used for their estimation to potentially be more extensive. The aim of the article is to use wavelets to approximate and predict a series. The article describes the author’s model for financial time forecasting and provides basic information about wavelets necessary for proper understanding of the proposed wavelet algorithm. The algorithm uses a Daubechies wavelet.

Finansowe szeregi czasowe wykazują charakterystyczne własności. Wśród nich można wymienić m.in.: występowanie zjawiska grupowania wariancji, leptokurtyczność rozkładów stóp zwrotu (tzw. grube ogony rozkładu) oraz ujemną korelację pomiędzy stopami zwrotu a zmiennością ich wariancji. Zjawiska te powodują, że w wielu przypadkach stosowanie standardowych metod estymacji parametrów i prognozowania nie przynosi zadowalających rezultatów. Ważną cechą finansowych szeregów czasowych jest fakt, że szeregi finansowe charakteryzują się długimi próbkami, co powoduje, że stosowane do ich estymacji modele mogą być bardziej rozbudowane. Celem artykułu jest aproksymacja i predykcja szeregów finansowych z falkami z uwzględnieniem tzw. efektów brzegowych. W artykule opisano autorski model prognozowania finansowych szeregów czasowych oraz przedstawiono podstawowe informacje o falkach niezbędne do właściwego zrozumienia proponowanego algorytmu falkowego. W autorskim algorytmie wykorzystano falkę Daubechies.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies