Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Regularization for electricity price forecasting

Tytuł:
Regularization for electricity price forecasting
Autorzy:
UNIEJEWSKI Bartosz
Tematy:
electricity price forecasting regularization
power market
convex regularization
LQ regularization
elastic net
Język:
angielski
Dostawca treści:
CEJSH
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The most commonly used form of regularization typically involves defining the penalty function as a ℓ1 or ℓ2 norm. However, numerous alternative approaches remain untested in practical applications. In this study, we apply ten different penalty functions to predict electricity prices and evaluate their performance under two different model structures and in two distinct electricity markets. The study reveals that LQ and elastic net consistently produce more accurate forecasts compared to other regularization types. In particular, they were the only types of penalty functions that consistently produced more accurate forecasts than the most commonly used LASSO. Furthermore, the results suggest that cross-validation outperforms Bayesian information criteria for parameter optimization, and performs as well as models with ex-post parameter selection.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies