Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Współczesne zmiany narzędzi badań statystycznych

W artykule zwrócono uwagę na współcześnie obserwowane zmiany narzędzi statystycznych służących badaniom naukowym w zakresie analizy i prognozowania procesów społeczno-ekonomicznych. Punktem wyjścia przeprowadzonych rozważań jest klasyczny schemat badań statystycznych w naukach ekonomicznych. Zwrócono uwagę na jego ograniczenia. Wskazano na współczesne metody analizy danych, oparte na regułach sztucznej inteligencji, które pomagają wyeliminować ograniczenie klasycznego schematu badań. Metody te należą do procedur uczenia nadzorowanego. Nawiązano do podstawowych metod klasyfikacji danych, jakimi są analiza dyskryminacyjna oraz model logitowy. Następnie scharakteryzowano te metody uczenia nadzorowanego, które również mogą mieć szersze zastosowanie w badaniach społeczno-ekonomicznych. Należą do nich: naiwny klasyfikator bayesowski, sieci bayesowskie, metoda k-najbliższych sąsiadów, metoda wektorów nośnych, klasyfikatory jądrowe, sztuczne sieci neuronowe, drzewa decyzyjne oraz podejście wielomodelowe (lasy losowe, bagging, boosting). Zwrócono uwagę, że i te metody podlegają jednak pewnym ograniczeniom. Artykuł ma charakter przeglądowy i zawiera odniesienia do prac, w których zastosowano metody uczenia nadzorowanego w badaniach społeczno-ekonomicznych, opublikowanych w języku polskim.

Many changes are observed in statistical tools for research in the field of analysis and the forecasting of socio-economic processes. The starting point of the considerations carried out is a classic scheme of statistical investigations in the economic sciences. Particular attention is paid to its limitations. Modern methods of data analysis, based on artificial intelligence, can help eliminate the limitations of the classical statistical investigations. These methods can be counted among supervised learning procedures. The paper next goes on to discuss the basic methods of data classification, including LDA and logit. Supervised learning methods that may have wider application in socio-economic studies are then presented. These include: the Naïve Bayes Classifier, Bayesian Networks, k-nearest neighbours, vector support machines, kernel classifiers, artificial neural networks, decision trees, and a multi-model approach (random forests, bagging, boosting). However, these methods are also subject to certain restrictions. The article is an overview and contains references to works in which supervised learning methods have been applied in socio-economic studies.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies