Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Attack vectors on supervised machine learning systems in business applications

Tytuł:
Attack vectors on supervised machine learning systems in business applications
Wektory ataków na nadzorowane systemy uczące się w zastosowaniach biznesowych
Autorzy:
Surma Jerzy
Tematy:
adversarial machine learning
supervised machine learning
security of machine
learning systems
antagonistyczne maszynowe uczenie się
nadzorowane maszynowe uczenie się
bezpieczeństwo systemów uczących się
Język:
angielski
Dostawca treści:
CEJSH
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
 Machine learning systems have become incredibly popular and now have practical applications in many fields. An area of business applications has been developing particularly well, starting from the prediction of customers’ purchase preferences and up to the automation of critical business processes. In this context, the security of such systems in a situation of a threat of intentional attacks carried by organized crime is extremely important. A theoretical framework of attacks on supervised machine learning systems, which are the most popular in business applications, is set out in this article. The possible attack vectors are widely discussed. The main contribution of this article is to recognize that the black box type attack scenario is the most probable, therefore the scenario of this kind of attacks was described extensively.

Systemy uczące się stają się coraz bardziej popularne i mają wiele praktycznych zastosowań. Szczególnie istotny i szybko rozwijający się jest obszar zastosowań biznesowych. W tym kontekście bezpieczeństwo informacyjne takich systemów jest niezwykle ważne, zwłaszcza przy dużej aktywności zorganizowanych grup cyberprzestępców. W artykule przedstawiono taksonomię intencjonalnych ataków na systemy uczące się pod nadzorem, które to są obecnie najpopularniejsze w zastosowaniach biznesowych. Omówiono także potencjalne wektory ataków. Wskazano ataki typu „czarna skrzynka” jako najbardziej prawdopodobne scenariusze ataków i omówiono je bardziej szczegółowo.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies