Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Comparative Analysis of the Ordering of Polish Provinces in Terms of Social Cohesion

Tytuł:
Comparative Analysis of the Ordering of Polish Provinces in Terms of Social Cohesion
Analiza porównawcza uporządkowania województw Polski ze względu na spójność społeczną
Autorzy:
Grażyna Dehnel
Marek Walesiak
Marek Obrębalski
Tematy:
social cohesion
composite indicators
interval-valued data
multidimensional scaling
R software
spójność społeczna
miary agregatowe
zmienne symboliczne interwałowe
skalowanie wielowymiarowe
program R
Język:
angielski
Dostawca treści:
CEJSH
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The article describes an assessment of the social cohesion of Polish provinces. The assessment was based on classical metric and interval-valued data using a hybrid approach combining multidimensional scaling with linear ordering. In the first step, after applying multidimensional scaling, the objects of interest were represented in a two-dimensional space. In the second step, the objects were linearly ordered based on the Euclidean distance from the pattern object. Interval-valued variables characterize the objects of interests more accurately than do metric data. Classic data are of an atomic nature, i.e. an observation of each variable is expressed as a single real number. By contrast, an observation of each interval-valued variable is expressed as an interval. Interval-valued data were derived by aggregating classic metric data on social cohesion at the level of districts to the province level. The article describes a comparative analysis of the results of an assessment of the social cohesion of Polish provinces based on classical metric data and interval-valued data.

Ocenę spójności społecznej województw Polski przeprowadzono na podstawie klasycznych danych metrycznych oraz symbolicznych interwałowych z wykorzystaniem podejścia hybrydowego łączącego zastosowanie skalowania wielowymiarowego z porządkowaniem liniowym. W pierwszym kroku w wyniku zastosowania skalowania wielowymiarowego otrzymano wizualizację badanych obiektów w przestrzeni dwuwymiarowej. Następnie przeprowadzono porządkowanie liniowe zbioru obiektów na podstawie odległości Euklidesa od wzorca rozwoju. Zmienne symboliczne interwałowe opisują badane obiekty precyzyjniej niż metryczne dane klasyczne. Dane klasyczne mają charakter atomowy. Obserwacja na każdej zmiennej wyrażona jest w postaci jednej liczby rzeczywistej, z kolei dla zmiennych symbolicznych interwałowych obserwacja na każdej zmiennej ujęta jest w postaci przedziału liczbowego. W celu otrzymania danych symbolicznych interwałowych zastosowano dwustopniowe gromadzenie danych. Najpierw zgromadzono dane klasyczne dotyczące spójności społecznej według powiatów Polski, a następnie poddano je agregacji do poziomu województw, otrzymując dane symboliczne interwałowe. W artykule przeprowadzono analizę porównawczą wyników badania spójności społecznej województw Polski uzyskanych na podstawie klasycznych danych metrycznych oraz danych symbolicznych interwałowych.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies