Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

An approach to measuring the relation between risk and return. Bayesian analysis for WIG data

Tytuł:
An approach to measuring the relation between risk and return. Bayesian analysis for WIG data
Autorzy:
Pipień Mateusz
Tematy:
bayesian model comparison
Bayes factors
GARCH models
skewness
fat tails
wnioskowanie bayesowskie
czynnik Bayesa
GARCH
skośność
grube ogony
Język:
angielski
Dostawca treści:
CEJSH
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The main goal of this paper is an application of Bayesian inference in testing the relation between risk and return of the financial time series. On the basis of the Intertemporal CAl’M model, proposed by Merton (1973), we built a general sampling model suitable in analysing such relationship. The most important feature of our model assumptions is that the possible skewness of conditional distribution of returns is used as an alternative source of relation between risk and return. Thus, pure statistical feature of the sampling model is equipped with economic interpretation. This general specification relates to GARCH-In-Mean model proposed by Osiewalski and Pipień (2000). In order to make conditional distribution of financial returns skewed we considered a constructive approach based on the inverse probability integral transformation. In particular, we apply the hidden truncation mechanism, two approaches based on the inverse scale factors in the positive and the negative orthant, order statistics concept, Beta distribution transformation, Bernstein density transformation and the method recently proposed by Ferreira and Steel (2006). Based on the daily excess returns of WIG index we checked the total impact of conditional skewness assumption on the relation between return and risk on the Warsaw Stock Market. Posterior inference about skewness mechanisms confirmed positive and decisively significant relationship between expected return and risk. The greatest data support, as measured by the posterior probability value, receives model with conditional skewness based on the Beta distribution transform ation with two free parameters.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies