Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Extreme gradient boosting method in the prediction of company bankruptcy

Tytuł:
Extreme gradient boosting method in the prediction of company bankruptcy
Autorzy:
Barbara Pawełek
Tematy:
XGBoost
company bankruptcy
machine learning
outlier
Dostawca treści:
CEJSH
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Machine learning methods are increasingly being used to predict company bankruptcy. Comparative studies carried out on selected methods to determine their suitability for predicting company bankruptcy have demonstrated high levels of prediction accuracy for the extreme gradient boosting method in this area. This method is resistant to outliers and relieves the researcher from the burden of having to provide missing data. The aim of this study is to assess how the elimination of outliers from data sets affects the accuracy of the extreme gradient boosting method in predicting company bankruptcy. The added value of this study is demonstrated by the application of the extreme gradient boosting method in bankruptcy prediction based on data free from the outliers reported for companies which continue to operate as a going concern. The research was conducted using 64 financial ratios for the companies operating in the industrial processing sector in Poland. The research results indicate that it is possible to increase the detection rate for bankrupt companies by eliminating the outliers reported for companies which continue to operate as a going concern from data sets.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies