Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Missing data estimation based on the chaining technique in survey sampling

Tytuł:
Missing data estimation based on the chaining technique in survey sampling
Autorzy:
Narendra Singh Thakur
Diwakar Shukla
Data publikacji:
2022-12-15
Tematy:
estimation
missing data
chaining
imputation
bias
mean squared error (MSE)
factor type (F-T)
chain type estimator
double sampling
Dostawca treści:
CEJSH
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Sample surveys are often affected by missing observations and non-response caused by the respondents' refusal or unwillingness to provide the requested information or due to their memory failure. In order to substitute the missing data, a procedure called imputation is applied, which uses the available data as a tool for the replacement of the missing values. Two auxiliary variables create a chain which is used to substitute the missing part of the sample. The aim of the paper is to present the application of the Chain-type factor estimator as a means of source imputation for the non-response units in an incomplete sample. The proposed strategies were found to be more efficient and bias-controllable than similar estimation procedures described in the relevant literature. These techniques could also be made nearly unbiased in relation to other selected parametric values. The findings are supported by a numerical study involving the use of a dataset, proving that the proposed techniques outperform other similar ones.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies