Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Implementation of K-Nearest Neighbor using the oversampling technique on mixed data for the classification of household welfare status

Tytuł:
Implementation of K-Nearest Neighbor using the oversampling technique on mixed data for the classification of household welfare status
Autorzy:
Nur Mutmainnah Djafar
Achmad Fauzan
Data publikacji:
2024-03-06
Tematy:
ADASYN
KNN
random oversampling
SMOTE
welfare
Dostawca treści:
CEJSH
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Welfare is closely related to poverty and the socio-economic disparities in a society. Based on data from the Central Bureau of Statistics, Kulon Progo in Indonesia had the highest poverty rate in the province of the Special Region of Yogyakarta; an increasing trend was observed every year from 2019 to 2021; Kulon Progo also had a low poverty line (after Gunung Kidul) compared to other regencies/cities in this province. This study aimed to classify the household welfare status in Kulon Progo in March 2021 using the K-Nearest Neighbor (KNN) method. Since imbalance was found between the poor and non-poor classes, an oversampling technique was employed. Imbalanced data affect classification, particularly when predicting the results of the classification. The following oversampling techniques were employed in this study: Random Oversampling (RO), the Adaptive Synthetic (ADASYN) and the Synthetic Minority Oversampling Technique (SMOTE). It was found that, of the three techniques, RO was the most efficient with k = 5, which yielded the best performance in terms of sensitivity, specificity, the G-mean, and accuracy reaching 0.643, 0.805, 0.719, and 78.873%, respectively. Therefore, it can be concluded that the classification model performed well enough to classify household welfare status, especially among the poor (minority class).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies