Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Artificial neural networks in forecasting tourists’ flow, an intelligent technique to help the economic development of tourism in Albania.

Tytuł:
Artificial neural networks in forecasting tourists’ flow, an intelligent technique to help the economic development of tourism in Albania.
Autorzy:
Gjylapi, Dezdemona
Durmishi, Veronika
Data publikacji:
2014
Wydawca:
Academicus. International Scientific Journal publishing house
Tematy:
tourist inflow
tourism economy
neural networks
neuro-genetic
bpnn
Źródło:
Academicus International Scientific Journal; 2014, 10; 202-211
2079-3715
2309-1088
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Tourism plays an important role in many economies and contributes greatly to the Gross Domestic Product. In the past eight years, the number of tourist arrivals in Albania has increased rapidly, which resulted in increasing the number of tourist nights and revenue from tourism. Tourism also provides new sources of income for the country, without having that local citizen to pay more taxes. This can be achieved by income from parking, tourist taxes, leased apartments, sales information, etc. Early prediction on the tourist inflow mainly focuses on econometric models that have as a main feature the tourism demand being predicted by analysing factors that affect the tourists’ inflow. This approach results in being difficult, time-consuming and also expensive to determine econometric models. Traditional time series methods, such as exponential smoothing method, grey prediction method, linear regression method, ARIMA method etc., are more appropriate for the prediction of the tourist inflow. However, since they don’t apply a learning process on sample data, it is difficult for them to realize complicated and non-linear prediction on tourist inflow. The aim of this paper is to present the neural network usage in the tourists’ number forecasting and to determine the trends of the future tourist inflow, thus helping tourism management agencies in making scientific based financial decisions.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies