Tytuł pozycji:
Range inclusion results for derivations on noncommutative Banach algebras
- Tytuł:
-
Range inclusion results for derivations on noncommutative Banach algebras
- Autorzy:
-
Runde, Volker
- Data publikacji:
-
1993
- Wydawca:
-
Polska Akademia Nauk. Instytut Matematyczny PAN
- Źródło:
-
Studia Mathematica; 1993, 105, 2; 159-172
0039-3223
- Język:
-
angielski
- Prawa:
-
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
- Dostawca treści:
-
Biblioteka Nauki
-
Przejdź do źródła  Link otwiera się w nowym oknie
Let A be a Banach algebra, and let D : A → A be a (possibly unbounded) derivation. We are interested in two problems concerning the range of D:
1. When does D map into the (Jacobson) radical of A?
2. If [a,Da] = 0 for some a ∈ A, is Da necessarily quasinilpotent?
We prove that derivations satisfying certain polynomial identities map into the radical. As an application, we show that if [a,[a,[a,Da]]] lies in the prime radical of A for all a ∈ A, then D maps into the radical. This generalizes a result by M. Mathieu and the author which asserts that every centralizing derivation on a Banach algebra maps into the radical. As far as the second question is concerned, we are unable to settle it, but we obtain a reduction of the problem and can prove the quasinilpotency of Da under commutativity assumptions slightly stronger than [a,Da] = 0.