Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Sur lunicité du développement trigonométrique

Tytuł:
Sur lunicité du développement trigonométrique
Autorzy:
Rajchman, Aleksander
Data publikacji:
1922
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
zbiór domknięty
analiza matematyczna
zbieżność szeregu
szereg trygonometryczny
miara Lebesgue'a
zbiór domknięty typu Hardy-Littlevood-Steinhausa
Źródło:
Fundamenta Mathematicae; 1922, 3, 1; 287-302
0016-2736
Język:
francuski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Le but de cette note est de démontrer le suivant théorème: Si la série trigonométrique $a_0/2 + ∑_{n=1}^{n = ∞}(a_n cos2πnx + b_n sin2πnx )$, dont les coefficients $a_n, b_n$ tendent vers zéro quand n → ∞, converge vers zéro partout, sauf peut-être aux points d'un ensemble fermé Z, ou, plus généralement, si partout, sauf peut-être aux points de Z, on a $a_0/2 + lim_{r → 1} ∑_{n=1}^{n = ∞}(a_n cos2πnx + b_n sin2π nx )r^n =0$, alors, pourvu que l'ensemble Z soit du type Hardy-Littlevood-Steinhaus, on aura $a_0=0, a_n=b_n=0 (n=1,2,...)$.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies