Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Predicting emission spectra of fluorescent materials from their absorbance spectra using the artificial neural network

Tytuł:
Predicting emission spectra of fluorescent materials from their absorbance spectra using the artificial neural network
Autorzy:
Shams-Nateri, A
Piri, N
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
fluorescence
prediction
absorbance
emission
neural networks
Źródło:
Optica Applicata; 2015, 45, 4; 545-557
0078-5466
1899-7015
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Artificial neural networks have been shown to be able to approximate any continuous nonlinear functions and have been used to build data based empirical models for nonlinear processes. This work studies primarily the performance of neural networks as a tool for predicting the emission spectra of fluorescent materials from their absorbance, and further, tends to the determination of the optimal topology of the neural network for this purpose. In order to do this, spectral data were initially analyzed by a principal component analysis technique. The first four principal components were used as input nodes of neural networks with various training algorithms – namely cascade- and feed-forward algorithms – and also, various numbers of hidden layers and nodes. The obtained results indicate that the RMS error in a testing data set decreased with increasing the number of neurons and the minimal network architecture for a data prediction problem consists of two hidden layers, respectively with 9 and 1 nodes for both neural networks. Additionally, a better performance was obtained with the cascade-forward neural network, especially in a small number of nodes. The obtained results indicate that the neural networks can be used to provide a relationship between the absorbance as an input and the emission as a target.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies