Tytuł pozycji:
Gazoprzepuszczalność materiałów porowatych o anizotropowej strukturze
Przedstawiono wyniki badań doświadczalnych w zakresie oceny przepuszczalności materiałów porowatych w odniesieniu do przepływu gazu. Badaniom podano karbonizaty o anizotropowej strukturze szczelinowo-porowatej, a także - celem porównania - materiały modelowe typu pumeks i spieki poliamidowe. Badania wykonano na specjalnie do tego celu przygotowanym stanowisku pomiarowym, umożliwiającym pomiar gazoprzepuszczalności względem trzech orientacji przepływu, odniesionych do symetrycznych próbek o kształcie sześciennym. Wyniki pomiarów wskazują na wyraźny wpływ kierunkowości przepływu na przepuszczalność karbonizatów, co wynika z anizotropowej ich struktury wewnętrznej. Zdefiniowano współczynnik przepuszczalności tego typu materiałów oraz dokonano eksperymentalnej oceny wartości tego współczynnika względem strumienia gazu oraz całkowitego spadku ciśnienia na porowatym złożu. Dokonano oceny przydatności metod obliczeniowych charakteryzujących hydrodynamikę przepływu gazu przez porowate materiały oraz wskazano na możliwość numerycznego odwzorowania geometrii przepływowej materiałów o krętej strukturze szkieletowej.
The paper presents results of experimental studies dealing with the assessment of porous materials permeability with respect to the gas flow. The study was carried out for coal-char material with an anisotropic slotted structure, and for comparison, for model materials such as pumice and sintered polyamide. The tests were performed in a specially prepared measuring setup allowing the measurement of gas permeability at three flow directions with respect to porous samples of cubic shape. The measurement results demonstrated an effect of gas flow direction on chars permeability caused by their anisotropic internal structure. The permeability coefficient was defined, its value with respect to gas flux was experimentally evaluated and the total pressure drop across the porous bed was determined. An assessment of usefulness of computational methods characterizing the hydrodynamics of gas flow through porous materials is presented. Additionally, the possibility of numerical mapping of flow geometry of backbone tortuous structure materials is considered.