Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Application of the Teager Kaiser Energy Operator in an autonomous burst detector to create onset and offset profiles of forearm muscles during reach-to-grasp movements

Tytuł:
Application of the Teager Kaiser Energy Operator in an autonomous burst detector to create onset and offset profiles of forearm muscles during reach-to-grasp movements
Autorzy:
Krabben, T.
Prange, G. B.
Kobus, H. J.
Rietman, J. S.
Buurke, J. H.
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
elektromiografia
AGLR
Teager-Kaiser
electromyography
timing
reach
grasp
Źródło:
Acta of Bioengineering and Biomechanics; 2016, 18, 4; 135-144
1509-409X
2450-6303
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Purpose: The primary aim of this study is to investigate the potential benefit of the Teager–Kaiser Energy Operator (TKEO) as data pre-processor, in an autonomous burst detection method to classify electromyographic signals of the (fore)arm and hand. For this purpose, optimal settings of the burst detector, leading to minimal detection errors, need to be known. Additionally, the burst detector is applied to real muscle activity recorded in healthy adults performing reach-to-grasp movements. Methods: The burst detector was based on the Approximated Generalized Likelihood Ratio (AGLR). Simulations with synthesized electromyographic (EMG) traces with known onset and offset times, yielded optimal settings for AGLR parameters “window width” and “threshold value” that minimized detection errors. Next, comparative simulations were done with and without TKEO data pre-processing. Correct working of the burst detector was verified by applying it to real surface EMG signals obtained from arm and hand muscles involved in a submaximal reach-to-grasp task, performed by healthy adults. Results: Minimal detection errors were found with a window width of 100 ms and a detection threshold of 15. Inclusion of the TKEO contributed significantly to a reduction of detection errors. Application of the autonomous burst detector to real data was feasible. Conclusions: The burst detector was able to classify muscle activation and create Muscle Onset Offset Profiles (MOOPs) autonomously from real EMG data, which allows objective comparison of MOOPs obtained from movement tasks performed in different conditions or from different populations. The TKEO contributed to improved performance and robustness of the burst detector.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies