Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Kolmogorov-Arnold networks for metal surface defect classification

Tytuł:
Kolmogorov-Arnold networks for metal surface defect classification
Sieci Kolmogorov-Arnold w klasyfikacji defektów powierzchniowych metali
Autorzy:
Krzywda, Maciej
Wermiński, Mariusz
Łukasik, Szymon
Gandomi, Amir H.
Data publikacji:
2024
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
Kolmogorov–Arnold Networks
KAN
Klasyfikacja
Defekty powierzchniowe metali
Sztuczne Sieci Neuronowe
Classification
Metal surface defects
Artificial Neural Networks
Źródło:
Studia i Materiały Informatyki Stosowanej; 2024, 16, 3; 52-56
1689-6300
Język:
angielski
Prawa:
CC BY-SA: Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This paper presents the application of Kolmogorov-Arnold Networks (KAN) in classifying metal surface defects. Specifically, steel surfaces are analyzed to detect defects such as cracks, inclusions, patches, pitted surfaces, and scratches. Drawing on the Kolmogorov-Arnold theorem, KAN provides a novel approach compared to conventional multilayer perceptrons (MLPs), facilitating more efficient function approximation by utilizing spline functions. The results show that KAN networks can achieve better accuracy than convolutional neural networks (CNNs) with fewer parameters, resulting in faster convergence and improved performance in image classification.

W niniejszej pracy przedstawiono zastosowanie sieci Kolmogorov-Arnold (KAN) w klasyfikacji defektów powierzchni metali. W szczególności badane są powierzchnie stali pod kątem wykrywania takich wad, jak pęknięcia, wtrącenia, łaty, powierzchnie z wżerami i zarysowania. Sieci KAN, oparte na twierdzeniu Kolmogorova-Arnolda, stanowią innowacyjną alternatywę dla tradycyjnych wielowarstwowych perceptronów (MLP), umożliwiając efektywniejsze aproksymowanie funkcji poprzez zastosowanie funkcji sklejanych. Wyniki badań wskazują, że sieci KAN mogą osiągać lepszą dokładność niż konwolucyjne sieci neuronowe (CNN) przy mniejszej liczbie parametrów, co skutkuje szybszą zbieżnością i lepszymi wynikami w klasyfikacji obrazów.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies