Tytuł pozycji:
Kolmogorov-Arnold networks for metal surface defect classification
This paper presents the application of Kolmogorov-Arnold Networks (KAN) in classifying metal surface defects. Specifically, steel surfaces are analyzed to detect defects such as cracks, inclusions, patches, pitted surfaces, and scratches. Drawing on the Kolmogorov-Arnold theorem, KAN provides a novel approach compared to conventional multilayer perceptrons (MLPs), facilitating more efficient function approximation by utilizing spline functions. The results show that KAN networks can achieve better accuracy than convolutional neural networks (CNNs) with fewer parameters, resulting in faster convergence and improved performance in image classification.
W niniejszej pracy przedstawiono zastosowanie sieci Kolmogorov-Arnold (KAN) w klasyfikacji defektów powierzchni metali. W szczególności badane są powierzchnie stali pod kątem wykrywania takich wad, jak pęknięcia, wtrącenia, łaty, powierzchnie z wżerami i zarysowania. Sieci KAN, oparte na twierdzeniu Kolmogorova-Arnolda, stanowią innowacyjną alternatywę dla tradycyjnych wielowarstwowych perceptronów (MLP), umożliwiając efektywniejsze aproksymowanie funkcji poprzez zastosowanie funkcji sklejanych. Wyniki badań wskazują, że sieci KAN mogą osiągać lepszą dokładność niż konwolucyjne sieci neuronowe (CNN) przy mniejszej liczbie parametrów, co skutkuje szybszą zbieżnością i lepszymi wynikami w klasyfikacji obrazów.