Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Chvátal-Erdös type theorems

Tytuł:
Chvátal-Erdös type theorems
Autorzy:
Faudree, Jill
Faudree, Ralph
Gould, Ronald
Jacobson, Michael
Magnant, Colton
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Hamiltonian
Hamiltonian-connected
Chvátal-Erdös condition
independence number
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 2; 245-256
2083-5892
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The Chvátal-Erdös theorems imply that if G is a graph of order n ≥ 3 with κ(G) ≥ α(G), then G is hamiltonian, and if κ(G) > α(G), then G is hamiltonian-connected. We generalize these results by replacing the connectivity and independence number conditions with a weaker minimum degree and independence number condition in the presence of sufficient connectivity. More specifically, it is noted that if G is a graph of order n and k ≥ 2 is a positive integer such that κ(G) ≥ k, δ(G) > (n+k²-k)/(k+1), and δ(G) ≥ α(G)+k-2, then G is hamiltonian. It is shown that if G is a graph of order n and k ≥ 3 is a positive integer such that κ(G) ≥ 4k²+1, δ(G) > (n+k²-2k)/k, and δ(G) ≥ α(G)+k-2, then G is hamiltonian-connected. This result supports the conjecture that if G is a graph of order n and k ≥ 3 is a positive integer such that κ(G) ≥ k, δ(G) > (n+k²-2k)/k, and δ(G) ≥ α(G)+k-2, then G is hamiltonian-connected, and the conjecture is verified for k = 3 and 4.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies