Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Rate of translocation across lipid bilayer of triphenylphosphonium-linked salinomycin derivatives contributes significantly to their K+/H+ exchange activity on membranes

Tytuł:
Rate of translocation across lipid bilayer of triphenylphosphonium-linked salinomycin derivatives contributes significantly to their K+/H+ exchange activity on membranes
Autorzy:
Antonenko, Yuri N.
Rokitskaya, Tatyana I.
Khailova, Ljudmila S.
Jędrzejczyk, Marta
Huczyński, Adam
Kotova, Elena A.
Współwytwórcy:
Lomonosov Moscow State University
Adam Mickiewicz University
Data publikacji:
2022-03-06
Wydawca:
Elsevier B.V.
Słowa kluczowe:
bilayer lipid membrane
liposome
mitochondria
salinomycin
Ionophore
Język:
angielski
ISBN, ISSN:
1878562X
Prawa:
http://creativecommons.org/licenses/by/4.0/
Linki:
https://depot.ceon.pl/handle/123456789/22412  Link otwiera się w nowym oknie
Dostawca treści:
Repozytorium Centrum Otwartej Nauki
Inne
  Przejdź do źródła  Link otwiera się w nowym oknie
Narodowe Centrum Nauki (NCN)

Salinomycin (SAL), a polyether antibiotic exerting K+/H+-exchange on cellular membranes, effectively kills cancer stem cells. A series of cationic triphenylphosphonium (TPP+)-linked SAL derivatives were synthesized aiming to render them mitochondria-targeted. Remarkably, attaching a TPP+ moiety via a triazole linker at the C- 20 position of SAL (compound 5) preserved the ion carrier potency of the antibiotic, while analogs with TPP+ linked at the C-1 position of SAL (6, 8) were ineffective. On planar bilayer lipid membranes (BLM), the SAL analogs 6 and 8 exhibited slow electrical current relaxation upon a voltage jump, similar to previously studied alkyl-TPP compounds. However, 5 demonstrated much faster current relaxation, which suggested its high permeability through BLM resulting in its pronounced potency to transport potassium and hydrogen ions across both artificial (liposomal) and mitochondrial membranes. SAL and 5 did not induce a steady-state electrical current through the planar lipid bilayer, thereby confirming that the transport mechanism is the electrically silent K+/H+ exchange. The ion exchange mediated by 5 in energized mitochondria was more active than that caused by SAL, which was apparently due to accumulation of 5 in mitochondria. Thus, compound 5 can be regarded as a promising lead compound for testing anticancer and antimicrobial activity.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies