Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations

Tytuł:
Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
Autorzy:
Divino, Fabio
Lasinio, Giovanna Jona
Semeniuk, Marcin
Niedzielewski, Karol
Parolini, Nicola
Morina, David
Nowosielski, Jedrzej
Pottier, Loic
Eclerova, Veronika
Prasse, Bastian
Osthus, Dave
Thanou, Dorina
Schneider, Johanna
Dreger, Filip
Holger, Kirsten
Trnka, Jan
Ardenghi, Giovanni
Giudici, Paolo
Zimmermann, Tom
Sherratt, Katharine
Wattanachit, Nutcha
Gambin, Anna
Filinski, Maciej
Pabjan, Barbara
Moszyński, Antoni
Fuhrmann, Jan
Funk, Sebastian
Bejar, Benjamin
Fairchild, Geoffrey
Kraus, Andrea
Montero-Manso, Pablo
Zielinski, Jakub
Redlarski, Grzegorz
Catala, Marti
Rodloff, Arne
Dimitris, Bertsimas
Zibert, Janez
Lewis, Bryan
Gruziel-Slomka, Magdalena
Krupa, Bartosz
Saksham, Soni
Idzikowski, Radoslaw
Bartolucci, Francesco
Guzman- Merino, Miguel
Lovison, Gianfranco
Hurt, Benjamin
Kheifetz, Yuri
Prats, Clara
Bracher, Johannes
Venkatramanan, Srinivasan
Scholz, Markus
Ziarelli, Giovanni
Gruson, Hugo
Grah, Rok
Obozinski, Guillaume
Reina, Borja
Leithauser, Neele
Bodych, Marcin
Porebski, Przemyslaw
Rakowski, Franciszek
Heyder, Stefan
Farcomeni, Alessio
Adiga, Aniruddha
Radwan, Maciej
Szczurek, Ewa
Gurung, Heidi
Barbarossa, Maria Vittoria
Suchoski, Bradley
Bock, Wolfgang
Krueger, Tyll
Ozanski, Tomasz
Villanueva, Inmaculada
Niehus, Rene
Tarantino, Barbara
Biecek, Przemyslaw
Maruotti, Antonello
Ray, Evan L
Zajicek, Milan
Kisielewski, Jan
Wolffram, Daniel
Rodiah, Isti
Meakin, Sophie R
Ullrich, Alexander
Lopez, Daniel
Wlazlo, Jaroslaw
Lange, Berit
Budzinski, Jozef
Meinke, Jan H
Alonso, Sergio
Gibson, Graham
Aznarte, Jose L
Reich, Nicholas G
Sheldon, Daniel
Kuhlmann, Alexander
Bartczuk, Rafal P
Burgard, Jan Pablo
Mingione, Marco
Priesemann, Viola
Baccam, Prasith
Walraven, Robert
Krymova, Ekaterina
Pribylova, Lenka
Srivastava, Ajitesh
Alvarez, Enric
Castro, Lauren
Michaud, Isaac
Marathe, Madhav
Wang, Lijing
Abbott, Sam
Bosse, Nikos I
Hotz, Thomas
Tucek, Vit
Gogolewski, Krzysztof
Dehning, Jonas
Mohring, Jan
Sandmann, Frank
Alaimo Di Loro, Pierfrancesco
Li, Michael Lingzhi
Deuschel, Jannik
Singh, David E
Smid, Martin
Pennoni, Fulvia
Wang, Yijin
Stage, Steven
Perez Alvarez, Cesar
Kraus, David
Mohr, Sebastian
Sun, Tao
Johnson, Helen
Współwytwórcy:
Éducation nationale, Valbonne, France
University of Bialystok, Poland
Medical University of Gdansk, Gdańsk, Poland
Universtät Leipzig, Leipzig, Germany
University of Virginia, Charlottesville, United States
LUMSA University, Rome, Italy
Robert Koch Institute, Berlin, Germany
University of Wroclaw, Wroclaw, Poland
IEM, Inc, Bel Air, United States
University of Southern California, Los Angeles, United States
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen, Germany
Paul Scherrer Institute, Villigen, Switzerland
University of Perugia, Perugia, Italy
University of Ljubljana, Ljubljana, Slovenia
Universitat Trier, Trier, Germany
University of Sydney, Sydney, Australia
Warsaw University of Technology, Warsaw, Poland
University of Rome "La Sapienza", Rome, Italy
Technische Universität Ilmenau, Ilmenau, Germany
Karlsruhe Institute of Technology, Karlsruhe, Germany
Eidgenossische Technische Hochschule, Zurich, Switzerland
Institute of Computer Science of the CAS, Prague, Czech Republic
Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
University of Palermo, Palermo, Italy
Boston Children’s Hospital and Harvard Medical School, Boston, United States
Massachusetts Institute of Technology, Cambridge, United States
European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
Universidad Carlos III de Madrid, Leganes, Spain
Institut d’Investigacions Biomèdiques August Pi i Sunyer, Universitat Pompeu Fabra, Barcelona, Spain
Institute of Information Theory and Automation of the CAS, Prague, Czech Republic
Universitat de Barcelona, Barcelona, Spain
University of Molise, Pesche, Italy
Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
Masaryk University, Brno, Czech Republic
Politecnico di Milano, Milan, Italy
Wroclaw University of Science and Technology, Wroclaw, Poland
University of Cologne, Cologne, Germany
Helmholtz Centre for Infection Research, Braunschweig, Germany
Frankfurt Institute for Advanced Studies, Frankfurt, Germany
IEM, Inc, Baton Rouge, United States;
Third Faculty of Medicine, Charles University, Prague, Czech Republic
Inverence, Madrid, Spain
University of Oxford, Oxford, United Kingdom
University of Rome "Tor Vergata", Rome, Italy
Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw
Universitat Politècnica de Catalunya, Barcelona, Spain
London School of Hygiene & Tropical Medicine, London, United Kingdom
University of Massachusetts Amherst, Amherst, United States
Heidelberg University, Heidelberg, Germany
Los Alamos National Laboratory, Los Alamos, United States
Technical University of Kaiserlautern, Kaiserslautern, Germany
University of Milano-Bicocca, Milano, Italy
Forschungszentrum Jülich GmbH, Jülich, Germany
raunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany
University of Pavia, Pavia, Italy
University of Halle, Halle, Germany
Data publikacji:
2023-06-02
Wydawca:
eLife Sciences Publications Ltd.
Słowa kluczowe:
global health
COVID-19
epidemiology
ensemble
Europe
none
modelling
forecast
prediction
Język:
angielski
ISBN, ISSN:
2050084X
Prawa:
http://creativecommons.org/licenses/by/4.0/
Linki:
https://depot.ceon.pl/handle/123456789/22761  Link otwiera się w nowym oknie
Dostawca treści:
Repozytorium Centrum Otwartej Nauki
Inne
  Przejdź do źródła  Link otwiera się w nowym oknie
Wellcome Trust (Grant number 221003/Z/20/Z) in collaboration with the Foreign, Commonwealth, and Development Office, United Kingdom. AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D- 0007, and respectively Virginia Dept of Health Grant VDH- 21- 501- 0141, VDH- 21- 501- 0143, VDH- 21- 501- 0147, VDH- 21- 501- 0145, VDH- 21- 501- 0146, VDH- 21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018- 095456-B- I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).

Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance. Results: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies