Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations

Tytuł:
Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
Autorzy:
Alonso, Sergio
Eclerova, Veronika
Parolini, Nicola
Krupa, Bartosz
Lewis, Bryan
Ray, Evan L
Wang, Lijing
Gibson, Graham
Kraus, David
Morina, David
Singh, David E
Marathe, Madhav
Maruotti, Antonello
Fairchild, Geoffrey
Niedzielewski, Karol
Wattanachit, Nutcha
Meinke, Jan H
Thanou, Dorina
Farcomeni, Alessio
Tarantino, Barbara
Rodloff, Arne
Heyder, Stefan
Gogolewski, Krzysztof
Ardenghi, Giovanni
Kisielewski, Jan
Filinski, Maciej
Kraus, Andrea
Moszyński, Antoni
Kuhlmann, Alexander
Bartolucci, Francesco
Michaud, Isaac
Zajicek, Milan
Sun, Tao
Bartczuk, Rafal P
Fuhrmann, Jan
Bosse, Nikos I
Nowosielski, Jedrzej
Priesemann, Viola
Gruziel-Slomka, Magdalena
Villanueva, Inmaculada
Bodych, Marcin
Giudici, Paolo
Alaimo Di Loro, Pierfrancesco
Zimmermann, Tom
Stage, Steven
Leithauser, Neele
Zielinski, Jakub
Hotz, Thomas
Alvarez, Enric
Abbott, Sam
Wang, Yijin
Barbarossa, Maria Vittoria
Biecek, Przemyslaw
Porebski, Przemyslaw
Niehus, Rene
Suchoski, Bradley
Lopez, Daniel
Obozinski, Guillaume
Budzinski, Jozef
Reich, Nicholas G
Zibert, Janez
Dehning, Jonas
Baccam, Prasith
Aznarte, Jose L
Krueger, Tyll
Smid, Martin
Wlazlo, Jaroslaw
Mingione, Marco
Perez Alvarez, Cesar
Guzman- Merino, Miguel
Rakowski, Franciszek
Castro, Lauren
Johnson, Helen
Gruson, Hugo
Tucek, Vit
Venkatramanan, Srinivasan
Mohring, Jan
Osthus, Dave
Holger, Kirsten
Wolffram, Daniel
Mohr, Sebastian
Gurung, Heidi
Adiga, Aniruddha
Ozanski, Tomasz
Divino, Fabio
Pottier, Loic
Semeniuk, Marcin
Funk, Sebastian
Catala, Marti
Redlarski, Grzegorz
Bracher, Johannes
Walraven, Robert
Li, Michael Lingzhi
Pabjan, Barbara
Sandmann, Frank
Dimitris, Bertsimas
Trnka, Jan
Sherratt, Katharine
Prasse, Bastian
Montero-Manso, Pablo
Gambin, Anna
Deuschel, Jannik
Schneider, Johanna
Lovison, Gianfranco
Lasinio, Giovanna Jona
Szczurek, Ewa
Pennoni, Fulvia
Idzikowski, Radoslaw
Bejar, Benjamin
Burgard, Jan Pablo
Ullrich, Alexander
Grah, Rok
Hurt, Benjamin
Kheifetz, Yuri
Scholz, Markus
Krymova, Ekaterina
Reina, Borja
Sheldon, Daniel
Radwan, Maciej
Srivastava, Ajitesh
Rodiah, Isti
Prats, Clara
Pribylova, Lenka
Saksham, Soni
Lange, Berit
Dreger, Filip
Bock, Wolfgang
Meakin, Sophie R
Ziarelli, Giovanni
Data publikacji:
2023-06-02
Wydawca:
eLife Sciences Publications Ltd.
Słowa kluczowe:
forecast
epidemiology
prediction
global health
ensemble
modelling
Europe
COVID-19
none
Język:
angielski
ISBN, ISSN:
2050084X
Prawa:
http://creativecommons.org/licenses/by/4.0/
Linki:
https://open.icm.edu.pl/handle/123456789/22761  Link otwiera się w nowym oknie
Dostawca treści:
Repozytorium Centrum Otwartej Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Wellcome Trust (Grant number 221003/Z/20/Z) in collaboration with the Foreign, Commonwealth, and Development Office, United Kingdom. AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D- 0007, and respectively Virginia Dept of Health Grant VDH- 21- 501- 0141, VDH- 21- 501- 0143, VDH- 21- 501- 0147, VDH- 21- 501- 0145, VDH- 21- 501- 0146, VDH- 21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018- 095456-B- I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).

Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance. Results: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies