Tytuł pozycji:
Zero carbon footprint hydrogen generation by photoreforming of methanol over Cu/TiO2 nanocatalyst
- Tytuł:
-
Zero carbon footprint hydrogen generation by photoreforming of methanol over Cu/TiO2 nanocatalyst
- Autorzy:
-
Colmenares, Juan Carlos
Bojarska, Zuzanna
Dziegielewski, Przemyslaw
Łomot, Dariusz
Nikiforow, Kostiantyn
Gradoń, Leon
Czelej, Kamil
Xu, Yi–Jun
Qi, Ming–Yu
Maximenko, Alexey
Ćwieka, Karol
- Data publikacji:
-
2023
- Wydawca:
-
ELSEVIER
- Słowa kluczowe:
-
hydrogen
photocatalysis
reforming
sustainable
methanol
- Język:
-
angielski
- ISBN, ISSN:
-
13858947
- Prawa:
-
http://creativecommons.org/licenses/by/4.0/
- Linki:
-
https://open.icm.edu.pl/handle/123456789/23000  Link otwiera się w nowym oknie
- Dostawca treści:
-
Repozytorium Centrum Otwartej Nauki
-
Przejdź do źródła  Link otwiera się w nowym oknie
LIDER/19/0069/L-11/19/NCBR/2020
Marie Sklodowska-Curie Actions – RISE, with the grant agreement No. 101007733
Interdisciplinary Centre forMathematical and Computational Modeling (ICM) of the University of Warsaw under Grant No. GB79-16
National Synchrotron Radiation Centre SOLARIS” under contract nr 1/SOL/2021/2
EU Horizon2020 program (952148-Sylinda)
Hydrogen generation by photoreforming of methanol is being one of the most intensely investigated photo chemical transformations in pursuing a sustainable, zero waste circular economy. This transformation usually produces a significant amount of gaseous carbon in the form of CO2 and CO that disqualifies many active photocatalysts as being fully sustainable. Here, we demonstrate the atomically dispersed Cu on TiO2 composite nanoparticles synthesized by the wet impregnation method that are highly active and selective in hydrogen production by photoreforming of methanol solution. Our photocatalyst exhibits an apparent quantum efficiency of 10% at 365 nm wavelength and the low power 0.45 W light emitting diode (LED) source. The only gaseous product found is molecular hydrogen, whereas all carbon is trapped in the downstream liquid mixture of formaldehyde and formic acid, making the process fully sustainable and clean. We used various experimental techniques and density functional theory calculations (DFT) to characterize our photocatalysts and provide an insight into the exceptional behavior of the Cu/TiO2 system. A combination of ab initio DFT and X–ray photo electron spectroscopy (XPS) measurements allowed us to identify the Cu+–Cu0–Cu+ redox cycle under the re action conditions. Bypassing the Cu2+ oxidation state is crucial to keep the oxidation potential of photogenerated holes low enough to prevent CO2 generation and keeping all carbon in the liquid phase. This work paves the way toward an efficient and clean generation of hydrogen by photoreforming of methanol over well–established and cheap Cu/TiO2 photocatalyst.