Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Raport Badawczy = Research Report ; RB/54/2003

Tytuł:
Raport Badawczy = Research Report ; RB/54/2003
Similarity on intuitionistic fuzzy sets and the Jaccard coefficient
Autorzy:
Szmidt, Eulalia. Autor
Kacprzyk, Janusz (1947– ). Autor
Data publikacji:
2003
Wydawca:
Instytut Badań Systemowych. Polska Akademia Nauk
Systems Research Institute. Polish Academy of Sciences
Słowa kluczowe:
Fuzzy sets
Jaccard coefficient
Źródło:
RB-2003-54
Język:
angielski
Prawa:
Creative Commons Attribution BY 4.0 license
Licencja Creative Commons Uznanie autorstwa 4.0
Linki:
https://rcin.org.pl/dlibra/publication/edition/139510/content  Link otwiera się w nowym oknie
Dostawca treści:
RCIN - Repozytorium Cyfrowe Instytutów Naukowych
Książka
  Przejdź do źródła  Link otwiera się w nowym oknie
In this article we propose a new measure of similarity for intuitionistic fuzzy sets. The most commonly used similarity measures are just the coun­terparts of distances in the sense that dissimilarity is proportional to a dis­tance between objects (elements, ...). The measure we propose ’’weights” both similarity and dissimilarity (un­der the assumption that dissimilarity behaves like a distance function be­tween the objects). In other words, we take into account two kinds of a distance function: a distance function between an element/object X we com­pare and an element/object F we com­pare with, and a distance function be­tween an element/object X we com­pare and a complement Fc of an el­ement/object we compare with. We also examine a special case of the pro­posed similarity measure (entropy in the sense of De Luca and Termini ax­ioms) and show that this special case is a counterpart of the Jaccard coeffi­cient.In this article we propose a new measure of similarity for intuitionistic fuzzy sets. The most commonly used similarity measures are just the coun­terparts of distances in the sense that dissimilarity is proportional to a dis­tance between objects (elements, ...). The measure we propose ’’weights” both similarity and dissimilarity (un­der the assumption that dissimilarity behaves like a distance function be­tween the objects). In other words, we take into account two kinds of a distance function: a distance function between an element/object X we com­pare and an element/object F we com­pare with, and a distance function be­tween an element/object X we com­pare and a complement Fc of an el­ement/object we compare with. We also examine a special case of the pro­posed similarity measure (entropy in the sense of De Luca and Termini ax­ioms) and show that this special case is a counterpart of the Jaccard coeffi­cient.In this article we propose a new measure of similarity for intuitionistic fuzzy sets. The most commonly used similarity measures are just the coun­terparts of distances in the sense that dissimilarity is proportional to a dis­tance between objects (elements, ...). The measure we propose ’’weights” both similarity and dissimilarity (un­der the assumption that dissimilarity behaves like a distance function be­tween the objects). In other words, we take into account two kinds of a distance function: a distance function between an element/object X we com­pare and an element/object F we com­pare with, and a distance function be­tween an element/object X we com­pare and a complement Fc of an el­ement/object we compare with. We also examine a special case of the pro­posed similarity measure (entropy in the sense of De Luca and Termini ax­ioms) and show that this special case is a counterpart of the Jaccard coeffi­cient.

[8] pages ; 21 cm

Bibliografia s. [7,8]

Bibliography p. [7,8]

[8] stron ; 21 cm

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies