Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A novel computerised quantification of thyroid vascularity in the differentiation of malignant and benign thyroid nodules

Tytuł:
A novel computerised quantification of thyroid vascularity in the differentiation of malignant and benign thyroid nodules
Autorzy:
Mohammadi, Afshin
Moosavi Toomatari, Seyed Ehsan
Karimi Sarabi, Zahra
Zafar Shamspour, Saber
Ghasemi-Rad, Mohammad
Rezayi, Seyfollah
Toubaei, Mohammadreza
Sepehrvand, Nariman
Toomatari, Seyed Babak Moosavi
Data publikacji:
2019
Słowa kluczowe:
thyroid nodule
colour mapping
ultrasonography
malignancy
Język:
angielski
ISBN, ISSN:
1733134X
Prawa:
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
Dostawca treści:
Repozytorium Uniwersytetu Jagiellońskiego
Artykuł
Purpose: Only five percent of thyroid nodules are malignant. It is important to find reliable and at the same time non-invasive methods to identify high-risk nodules. The aim of this study was to determine the diagnostic validity of a morphologic feature-oriented approach of ultrasound study for the identification of malignant thyroid nodules. Material and methods: Seventy-one thyroid nodules in 71 consecutive patients were evaluated with both ultrasonography (US) and US-assisted fine needle aspiration biopsy (FNAB). Thyroid grey-scale and power Doppler US were performed, and a Windows-based software was designed to process power Doppler US (PDUS) images that were recorded directly by the US device. We provided a histogram graph of coloured pixels and calculated the Malignancy Index to identify the probability of malignancy for each thyroid nodule. Results: Thirty-six nodules (50.7%) were determined to be malignant in FNAB. Area under the receiver operating curve was 0.91 (95% CI: 0.85-0.98) for PDUS-based malignancy index in differentiating malignant thyroid nodules from benign ones. The best cut-off point for malignancy index was determined to be 0.092, with a sensitivity of 86.1% and specificity of 80% in identifying malignant nodules. Conclusions: This PDUS-driven malignancy index using a contour-finding algorithm approach could accurately and reliably differentiate malignant and benign thyroid nodules. As a pre-FNAB assessment, the malignancy index may be able to reduce the number of patients with nodular thyroid disease undergoing this invasive procedure.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies