Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Identification and prospective stability of electronic nose (eNose)-derived inflammatory phenotypes in patients with severe asthma

Tytuł:
Identification and prospective stability of electronic nose (eNose)-derived inflammatory phenotypes in patients with severe asthma
Autorzy:
Bakke, P.S.
Montuschi, P.
Chanez, P.
Lefaudeux, D.
Horvath, I.
Fowler, S.J.
Auffray, C.
Santonico, M.
Brinkman, P.
Knobel, H.H.
Bansal, A.T.
Hekking, P.P.
Wang, Y.
Wagener, A.H.
Riley, J.H.
D'Amico, A.
Chung, K.F.
Dahlén, S.E.
Geiser, T.
Weda, H.
Rattray, N.J.
Krug, N.
Shaw, D.E.
Musiał, Jacek
Maitland-van der Zee, A.H.
Pennazza, G.
Sun, K.
Sterk, P.J.
Sandstrom, T.
Vink, T.J.
Sousa, A.R.
Corfield, J.
Caruso, M.
Djukanovic, R.
De Meulder, B.
Data publikacji:
2019
Słowa kluczowe:
neutrophils
volatile organic compound
oral corticosteroids
severe asthma
unbiased clustering
exhaled breath
electronic nose technology
eosinophils
follow-up
Język:
angielski
ISBN, ISSN:
00916749
Prawa:
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
Dostawca treści:
Repozytorium Uniwersytetu Jagiellońskiego
Artykuł
Background: Severe asthma is a heterogeneous condition, as shown by independent cluster analyses based on demographic, clinical, and inflammatory characteristics. A next step is to identify molecularly driven phenotypes using ‘‘omics’’ technologies. Molecular fingerprints of exhaled breath are associated with inflammation and can qualify as noninvasive assessment of severe asthma phenotypes. Objectives: We aimed (1) to identify severe asthma phenotypes using exhaled metabolomic fingerprints obtained from a composite of electronic noses (eNoses) and (2) to assess the stability of eNose-derived phenotypes in relation to withinpatient clinical and inflammatory changes. Methods: In this longitudinal multicenter study exhaled breath samples were taken from an unselected subset of adults with severe asthma from the U-BIOPRED cohort. Exhaled metabolites were analyzed centrally by using an assembly of eNoses. Unsupervised Ward clustering enhanced by similarity profile analysis together with K-means clustering was performed. For internal validation, partitioning around medoids and topological data analysis were applied. Samples at 12 to 18 months of prospective follow-up were used to assess longitudinal within-patient stability. Results: Data were available for 78 subjects (age, 55 years [interquartile range, 45-64 years]; 41% male). Three eNosedriven clusters (n 5 26/33/19) were revealed, showing differences in circulating eosinophil (P 5 .045) and neutrophil (P 5 .017) percentages and ratios of patients using oral corticosteroids (P 5 .035). Longitudinal within-patient cluster stability was associated with changes in sputum eosinophil percentages (P 5 .045). Conclusions: We have identified and followed up exhaled molecular phenotypes of severe asthma, which were associated with changing inflammatory profile and oral steroid use. This suggests that breath analysis can contribute to the management of severe asthma.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies