Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Online metric algorithms with untrusted predictions

Tytuł:
Online metric algorithms with untrusted predictions
Autorzy:
Polak, Adam
Simon, Bertrand
Antoniadis, Antonios
Coester, Christian
Elias, Marek
Data publikacji:
2020
Język:
angielski
ISBN, ISSN:
19387228
Linki:
https://proceedings.icml.cc/static/paper_files/icml/2020/6657-Paper.pdf  Link otwiera się w nowym oknie
Dostawca treści:
Repozytorium Uniwersytetu Jagiellońskiego
Inne
Machine-learned predictors, although achieving very good results for inputs resembling training data, cannot possibly provide perfect predictions in all situations. Still, decision-making systems that are based on such predictors need not only to benefit from good predictions but also to achieve a decent performance when the predictions are inadequate. In this paper, we propose a prediction setup for Metrical Task Systems (MTS), a broad class of online decision-making problems including, e.g., caching, k-server and convex body chasing. We utilize results from the theory of online algorithms to show how to make the setup robust. We extend our setup in two ways, (1) adapting it beyond MTS to the online matching on the line problem, and (2) specifically for caching, slightly enriching the predictor’s output to achieve an improved dependence on the prediction error. Finally, we present an empirical evaluation of our methods on real world datasets, which suggests practicality

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies