Tytuł pozycji:
Towards model-agnostic ensemble explanations
Explainable Artificial Intelligence (XAI) methods form a large portfolio of different frameworks and algorithms. Although the main goal of all of explanation methods is to provide an insight into the decision process of AI system, their underlying mechanisms may differ. This may result in very different explanations for the same tasks. In this work, we present an approach that aims at combining several XAI algorithms into one ensemble explanation mechanism via quantitative, automated evaluation framework. We focus on model-agnostic explainers to provide most robustness and we demonstrate our approach on image classification task.