Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Approximating pathwidth for graphs of small treewidth

Tytuł:
Approximating pathwidth for graphs of small treewidth
Autorzy:
Groenland, Carla
Joret, Gwenaël
Nadara, Wojciech
Walczak, Bartosz
Data publikacji:
2023
Słowa kluczowe:
treewidth
pathwidth
Język:
angielski
ISBN, ISSN:
15496325
Dostawca treści:
Repozytorium Uniwersytetu Jagiellońskiego
Artykuł
We describe a polynomial-time algorithm which, given a graph G with treewidth $t$, approximates the pathwidth of $G$ to within a ratio of $O$ ($t√log t $). This is the first algorithm to achieve an $f (t )$-approximation for some function $f$ . Our approach builds on the following key insight: every graph with large pathwidth has large treewidth or contains a subdivision of a large complete binary tree. Specifically, we show that every graph with pathwidth at least th + 2 has treewidth at least t or contains a subdivision of a complete binary tree of height $h$ + 1. The bound $th$ + 2 is best possible up to a multiplicative constant. This result was motivated by, and implies (with $c$ = 2), the following conjecture of Kawarabayashi and Rossman (SODA’18): there exists a universal constant c such that every graph with pathwidth $Ω(kc )$ has treewidth at least $k$ or contains a subdivision of a complete binary tree of height $k$. Our main technical algorithm takes a graph G and some (not necessarily optimal) tree decomposition of $G$ of width $t′$ in the input, and it computes in polynomial time an integer h, a certificate that $G$ has pathwidth at least h, and a path decomposition of G of width at most ($t′$ + 1)$h$ + 1. The certificate is closely related to (and implies) the existence of a subdivision of a complete binary tree of height $h$. The approximation algorithm for pathwidth is then obtained by combining this algorithm with the approximation algorithm of Feige, Hajiaghayi, and Lee (STOC’05) for treewidth.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies