Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Deep generative models for fast photon shower simulation in ATLAS

Tytuł:
Deep generative models for fast photon shower simulation in ATLAS
Autorzy:
Pałka, Marek
Richter-Wąs, Elżbieta
Gil, Damian
Współwytwórcy:
Współautorami artykułu są członkowie ATLAS Collaboration w liczbie 2859
Data publikacji:
2024
Język:
angielski
Prawa:
http://creativecommons.org/licenses/by/4.0/legalcode.pl
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
Dostawca treści:
Repozytorium Uniwersytetu Jagiellońskiego
Artykuł
The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies