Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Autorzy:
Hashim, Hashim Talib
Ali, Hossam Tharwat
Khan, Mudassir Ahmad
Daraghma, Motaz
Ali, Zahraa Hussein
Sahib, Mohanad Ahmed
Al-Obaidi, Ammar
Alhatemi, Ahmed Qasim Mohammed
Al-Obaidi, Ahmed Dheyaa
Sulaiman, Fatimah Abdullah
Data publikacji:
2025
Słowa kluczowe:
artificial intelligence
detecting early-stage breast cancer
radiologists
Język:
angielski
ISBN, ISSN:
1733134X
Prawa:
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
Dostawca treści:
Repozytorium Uniwersytetu Jagiellońskiego
Artykuł
Purpose: Early detection of breast cancer is crucial for improving patient outcomes. With advancements in artificial intelligence (AI), there is growing interest in its potential to assist radiologists in interpreting mammograms for early cancer detection. AI algorithms offer the promise of increased accuracy and efficiency in identifying subtle signs of breast cancer, potentially complementing the expertise of radiologists and enhancing the screening process for early-stage breast cancer detection. Material and methods: A systematic literature review was conducted to identify and select original research reports on breast cancer diagnosis by artificial intelligence versus conventional radiologists in using mammograms in accordance with the PRISMA guidelines. Data were analysed with Review Manager version 5.4. P-value and I2 were used to test the significance of differences. Results: This systematic review and meta-analysis included 8 studies with data from a total of 120,950 patients. Regarding the sensitivity of AI, the pooled analysis of 6 studies with sensitivities ranging from 0.70 to 0.89 yielded a sensitivity of 0.85. However, the sensitivity of the radiologists ranged from 0.63 to 0.85, with an overall sensitivity of 0.77. As for specificity, both radiologists and AI groups had closer results. Conclusions: The comparison between AI systems and radiologists in detecting early-stage breast cancer from mammograms highlights the potential of AI as a valuable tool in breast cancer screening. While AI algorithms have shown promising results in terms of accuracy and efficiency, they should be viewed as complementary to radiologists rather than replacements.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies