Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "laboratory data" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Survey design method – the key component of building the Polish Biobanking Network
Autorzy:
Paluch, Angelika
Chróścicka, Anna
Współwytwórcy:
Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Poland
BBMRI.pl Consortium
Laboratory for Cell Research and Application, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
Data publikacji:
2021-04-27
Wydawca:
Medical University of Gdańsk
Słowa kluczowe:
biobanking
survey
data
biobank
survey design
Pokaż więcej
Dostawca treści:
Repozytorium Centrum Otwartej Nauki
Inne
Tytuł:
National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021
Autorzy:
Schienle, Melanie
Bodych, Marcin
Srivastava, Ajitesh
Ullrich, Alexander
Mohring, Jan
Krueger, Tyll
Deuschel, Jannik
Bhatia, Sangeeta
Leithäuser, Neele
Meinke, Jan H.
Kheifetz, Yuri
Bracher, Johannes
Michaud, Isaac J.
Gneiting, Tilmann
Miasojedow, Błażej
Castro, Lauren
Fiedler, Jochen
Bertsimas, Dimitris
Gogolewski, Krzysztof
Burgard, Jan Pablo
Radwan, Maciej
Wolffram, Danie
Soni, Saksham
Abbott, Sam
Li, Michael L.
Krymova, Ekaterina
Ketterer, Jakob L.
Scholz, Markus
Heyder, Stefan
Fairchild, Geoffrey
Nowosielski, Jędrzej M.
Ozanski, Tomasz
Funk, Sebastian
Nouvellet, Pierre
Rakowski, Franciszek
Kirsten, Holger
Hotz, Thomas
Barbarossa, Maria V.
Görgen, Konstantin
Bosse, Nikos I.
Gambin, Anna
Fuhrmann, Jan
Współwytwórcy:
HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany
InterdisciplinaryCentre for Mathematical and Computational Modelling, University of Warsaw
Institute of Mathematics,Technische Universität Ilmenau, Germany
Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
Frankfurt Institute for Advanced Studies, Germany
Wroclaw University of Science and Technology, Poland
Institute for Applied Mathematics, University of Heidelberg, Germany
Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM, USA
Institute for Stochastics, Karlsruhe Institute of Technology (KIT), Germany
Robert Koch Institute (RKI), Berlin, Germany
Statistical Sciences Group, Los Alamos National Laboratory, USA
Ming Hsieh Department of Computer and Electrical Engineering, University of Southern California, Los Angeles, USA
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany
London School of Hygiene and Tropical Medicine, UK
School of Life Sciences, University of Sussex, Brighton, UK
Operations Research Center, MassachusettsInstitute of Technology, Cambridge, MA, USA
Chair of Statistical Methods and Econometrics, Karlsruhe Institute of Technology (KIT), Germany
Computational Statistics Group,Heidelberg Institute for Theoretical Studies (HITS), Germany
Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw
MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), Imperial College London, London, UK
Economic and Social StatisticsDepartment, University of Trier, Germany
Sloan School of Management, Massachusetts Institute of Technology,Cambridge, MA, USA
Swiss Data Science Center, ETH Zürich and EPF Lausanne, Zürich, Switzerland
Data publikacji:
2022
Wydawca:
Springer Nature
Słowa kluczowe:
Germany
COVID-19 pandemic
Poland
epidemiological forecast
forecasting models
SARS-CoV-2
epidemiological indicators
Pokaż więcej
Dostawca treści:
Repozytorium Centrum Otwartej Nauki
Artykuł
Tytuł:
A pre-registered short-term forecasting study of COVID-19 in Germany and Poland during the second wave
Autorzy:
Gogolewski, Krzysztof
Bracher, Johannes
Fairchild, Geoffrey
Li, Michael Lingzhi
Schienle, Melanie
Funk, Sebastian
Scholz, Markus
Srivastava, Ajitesh
Kirsten, Holger
Heyder, Stefan
Zielinski, Jakub
Deuschel, Jannik
Soni, Saksham
Görgen, Konstantin
Bosse, Nikos I.
Meinke, Jan H.
Niedzielewski, Karol
Wolffram, Daniel
Krymova, Ekaterina
Ullrich, Alexander
Krueger, Tyll
Castro, Lauren
Bertsimas, Dimitris
Ożański, Tomasz
Ketterer, Jakob L.
Bodych, Marcin
Hotz, Thomas
Gneiting, Tilmann
Fuhrmann, Jan
Michaud, Isaac
Bhatia, Sangeeta
Barbarossa, Maria Vittoria
Rakowski, Franciszek
Burgard, Jan Pablo
Gu, Quanquan
Abbott, Sam
Kheifetz, Yuri
Zou, Difan
Współwytwórcy:
Ming Hsieh Department of Computer and Electrical Engineering, University of Southern California, Los Angeles, USA
Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw
Institute of Mathematics, Technische Universität Ilmenau, Germany
Swiss Data Science Center, ETH Zurich and EPFL, Lausanne, Switzerland
Economic and Social Statistics Department, University of Trier, Germany
Department of Computer Science, University of California, Los Angeles, USA
Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, USA
Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, USA
Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany
Institute of Informatics, University of Warsaw, Poland
Wroclaw University of Science and Technology, Wroclaw, Poland
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Computational Statistics Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
Robert Koch Institute (RKI), Berlin, Germany
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, USA
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany
London School of Hygiene and Tropical Medicine, London, UK
Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), Imperial College London, UK
Operations Research Center, Massachusetts Institute of Technology, Cambridge, USA
Frankfurt Institute for Advanced Studies, Frankfurt, Germany
Data publikacji:
2021
Wydawca:
Springer Nature
Słowa kluczowe:
disease modelling
COVID-19
Pokaż więcej
Dostawca treści:
Repozytorium Centrum Otwartej Nauki
Inne
Tytuł:
Bridging the Gap between Field Experiments and Machine Learning: The EC H2020 B-GOOD Project as a Case Study towards Automated Predictive Health Monitoring of Honey Bee Colonies
Autorzy:
van Gennip, Pim
Alves da Silva, António
Alaux, Cedric
Schaafsma, Famke
van den Bosch, Trudy
Ulgezen, Zeynep
van Delden, April
de Graaf, Dirk C
Verbeke, Wim
Le Conte, Yves
Streicher, Tabea
Matthijs, Severine
Castro, Sílvia
Sousa, José Paulo
Godeau, Ugoline
Alves, Joana
Moro, Arrigo
Duan, Xiaodong
Alves, Fátima
Flener, Claude
Boúúaert, David Claeys
Mikołajczyk, Łukasz
Bencsik, Martin
Paxton, Robert J
Tehel, Anja
Filipiak, Michał
van Dooremalen, Coby
de Smet, Lina
Simões, Sandra
Valkenburg, Dirk-Jan
Leufgen, Kirsten
Giurgiu, Alexandru I
Dall’olio, Raffaele
Dezmirean, Daniel S
Williams, James Henty
Schäfer, Marc O
Lopes, Sara
Horčičková, Eva
Bica, João
Ziółkowska, Elżbieta
Schoonman, Marten
Beaurepaire, Alexis
Loureiro, João
Mcveigh, Adam
Dalmon, Anne
Capela, Nuno
Xu, Mang
Peters, Jeroen
Kumar, Tarun
Freshley, Dana
Topping, Christopher J
Współwytwórcy:
Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Avignon, France
Ghent University, Ghent, Belgium
Nottingham Trent University, Nottingham, UK
Aarhus Universitet, Aarhus, Denmark
Friedrich-Loeffler-Institut, Bundesforschunginstitut für Tiergesundheit, Greifswald-Insel Riems, Germany
Suomen Mehiläishoitajain Liitto, Helsinki, Finland
Uniwersytet Jagiellonski, Krakow, Poland
BeeSources di Raffaele Dall’Olio, Bologna, Italy
Stichting BEEP, Driebergen-Rijsenburg, The Netherlands
Universitatea de Stiinte Agricole si Medicina Veterinara Cluj Napoca, Cluj Napoca, Romania
Sciensano, Brussels, Belgium
Martin-Luther-Universitaet Halle-Wittenberg, Halle, Germany
Institute of Bee Health, University of Bern, Bern, Switzerland
Wageningen University & Research, Wageningen, The Netherlands
Centre for Functional Ecology, Department of Life Sciences, TERRA Associated Laboratory, University of Coimbra, Coimbra, Portugal
SCIPROM sàrl, Saint-Sulpice, Switzerland
Data publikacji:
2024-01-22
Wydawca:
MDPI
Słowa kluczowe:
honey bee
bee
protocol
work plan
standarization
data
B-GOOD
collection
honey bee automated health monitoring
colony
beekeeping
ecology
apiary
health
method
beekeeper
stakeholder
Pokaż więcej
Dostawca treści:
Repozytorium Centrum Otwartej Nauki
Inne
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies